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Motivation

Real world imitation learning
has questionable results on
datasets with varying quality.
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We seek to quantify the
benefit of return conditioned
Imitation learning on mixed
quality data by leveraging
robomimic.




Additional Motivation

Image Classification on ImageNet Transformer

Leaderboard Dataset

e Recent gains in performance by the
Transformer architecture in NLP and Computer
Vision

o Larger models require fewer samples to
reach comparable performance
o Stable training in large language models
e Simplicity of converting RL to a sequence
modeling problem
o No need to estimate a good value
function or rely on policy gradient )
methods p
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Prior Work: Sequence Modeling in RL

Attention Is All You Need Offline Reinforcement Learning as One Big Sequence

Modeling Problem
e Original Transformer architecture

e Concurrent work from Berkeley

Decision Transformer: Reinforcement . . ;
Learning via Sequence Modeling What Matters in Learning from Offline Human

Demonstrations for Robot Manipulation
e Basis of our project

e robomimic dataset
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Transformers

Let’s recap, what exactly is a oupu
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Original Decision Transformer

e Decision Transformers
abstract reinforcement
learning as a sequence
modeling problem.

e Offline reinforcement
learning.
Sl t-1

e We input state, actions,
and returns-to-go into a
causal transformer to get
our desired actions.
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What is robomimic?

Born from a paper known as What
Matters in Learning from Offline
Human Demonstrations for Robot
Manipulation....

- This paper studies challenges in
offline reinforcement learning from
human datasets — lessons to
guide future work — and release
of all datasets and code to
facilitate future work.
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roboimic

a framework for robot learning from demonstration

Study design is a large evaluation of
offline learning from human datasets:

- 8 tasks: lift, can, square, transport
(for coordination), tool hang.

- 3 types of data sets: machine
generate data, proficient human data,
multi-human datasets.

- 6 offline learning algorithms: BC,
BC-RNN, HBC, BCQ, CQL, IRIS

- 2 observation spaces: low
dimensional agents with ground truth,
image agents that receive camera
observations




Dataset Types roboimic

a framework for robot learning from demonstration

e Machine-Generated (MG)
o Mixture of suboptimal data from state-of-the-art RL agents

e Proficient-Human (PH) and Multi-Human (MH)
o 500 total, with 200 proficient human and 300 multi-human.
o Demonstrations from teleoperators of varying proficiency

e Our setting: ALL data
o More challenging combination of MG, MH, and PH
o Weighted towards lower-quality MG data
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Dataset Tasks robo™imic

a framework for robot learning from demonstration

We mainly focus on two tasks:

Lift Can

1. Lift: lift the cube

2. Can: pick up the can and
place it in proper spot

Why? These tasks have large
machine-generated 11 i e
(|Owe r-q Ua“ty) datasets lift the cube pickup and place the can
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Semi-Sparse Reward Function

_____________________________________

The Semi Sparse
. Reward Function:

Found that |
datasets in ' max(500 - success time, 0)
robomimic use Semi-Sparse ~ 7T
sparse rewards Reward Function
2 4
1 3

Attempt at Training

dense data altered

rewards
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Sparse vs. Dense Rewards

Sparse reward:

1. Inreinforcement learning, sparse is typically correspondent to a binary
success. It is given to an agent when the task is successfully complete,
which can be a rare occurrence.

2. ltis typically given for long-term goals and complex tasks.

Dense Rewards:

1. Type of reward that has a lot of specificity and precision and provides
feedback to the agent

2. Difficult to tune and implement in the real world

3. Inour case, we use the default dense reward from robomimic, which
includes metrics like object distance from the gripper.
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Semi-Sparse Reward Function (additional info)

Found that datasets in robomimic use sparse rewards.

1. This initially would require us to download every single
robomimic dataset and remake it with dense rewards.
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Our Architecture
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Experiments

Naive BC

BC + Action Inp

DT-1 (PH Only)

DT-3 (Context length of 3)
DT-10 (Context length of 10)
DT-20 (Context length of 20)
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Behavior Cloning

is difficult when using large mixed-quality datasets
and multimodal demonstration policies
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https://docs.google.com/file/d/1O5nkQKe_MSAtJbREoLCzBcDhPhMN5qtY/preview

Results

Return and Past-Action conditioning can make robomimic tasks more difficult

Can PH Success Rates

0.8
= DT (Large)

= Return-Conditioned BC 0.6
= DT (Hide RTGs)

Success Rate

0.4
= DT (Large, Hide RTGs)
— BC 0.2
0 Training Time (Minutes)

50 100 150 200
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Results

Longer sequence modeling improves action prediction and eases problems
caused by multi-modal demonstrations

Can-All Train Loss

0 500 1k 1.5k 2k
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Task: Lift (All Data)

Results
: BC + DT-1
Naive BC Aetion np.  (PH Ginily) DT-1 DT-3 DT-10 DT-20
Success Rate (%) 35 20 100 85 92 92 94
Return 189 113 463 397 428 433 421

Behavior Cloning large,
mixed-quality data leads to

surprisingly poor
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Task: Lift (All Data)

Results
Naive BC . B¢t DT-1 DT-3 DT-10 DT-20
Action Inp.
Success Rate (%) 35 20 85 92 92 94
Return 189 113 397 428 433 421

Removing the low-quality
data allows for expert

performance, as in original
robomimic
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Task: Lift (All Data)

Results
: BC + DT-1
Naive BC Aetion np.  (PH Ginily) DT-1 DT-3 DT-10§ DT-20
Success Rate (%) 35 20 100 85 92 92 94
Return 189 113 463 397 428 433 421

Decision Transformer can
(mostly) filter the good

demonstrations from the
machine-generated noise
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Task: Lift (All Data)

Results
DT-3 DT-10 DT-20
D1-3 DT-10 DT-20 (Gaussian) (Gaussian) (Gaussian)
Success Rate (%) 92 92 94 85 86
Return 428 433 421 403 406

The GMM policy is much
better at modeling
multi-modal policies than

— the standard Gaussian
policy used by most RL
agents
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Results

Decision Transformer lets us model the whole range of returns, not just the expert

Return Success Rate
500 = 1.0
- -
>
400 - 0.8
300 0.6
200 0.4
100 0.2 === Behavior Cloning
’ === Return Conditioned BC
==== Decision Transformer
0 0.0
360 380 400 420 440 460 480 360 380 400 420 440 460 480
Target Return Target Return
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Results Task: Can (All Data)

BC : BC +
(PH Only) Naive BC Action Inp. DT-3 §DT-10 DT-20
Success Rate (%) 99 14 15 81 76 63
Return 396 72 74 362 337 286

Action and RTG input
sequence makes this task
significantly more difficult.
But DT is much better than
naive BC

See our poster for more
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Results Task: Can (All Data)

DT-3 DT-10 DT-20 § DT-3 DT-10 DT-20 DT-3
(Large) (Large) (Large) §(Small) (Small) (Small) § (Large, Gaussian)

Success Rate (%) 81 76 63 65 57 61 66
Return 362 337 286 262 278 204

Smaller Transformer sizes
decrease performance in
the Can task
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Results Task: Can (All Data)

DT-3 DT-10 DT-20 DT-3 DT-10 DT-20
(Large) (Large) (Large) (Small) (Small) (Small) § (Large, Gaussian)

Success Rate (%) 81 76 63 65 57 61
Return 362 337 286 292 262 278

Standard Gaussian policies
are less capable of
modeling multi-modal
action distributions than
our Gaussian Mixture Model
default
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Critiques and Limitations

1. Extremely long training time — the datasets become extremely large when
we combine all 3 data types, so more gradient updates are required to get
good performance. Approximate 24 hours of training time.

2. Dense Rewards in Robomimic — Robomimic was not designed for dense
rewards. We believe that altering the reward that is returned to match our goal
would likely lead to very good results.

3. Reward Function — Creating a better reward function would likely yield
some great results.

4. Data Quality — Lack of mixed-quality data for other tasks
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Code Structure

Main files:

® agent.py
o Main Class: Agent

® transformer.py
o Contains actual transformer implementation
o Key Classes
m TransformerEncoder
m TransformerLayer

® learn.py

o Includes command line arguments for
experimentation with ArgumentParser
o Main Class: Experiment
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