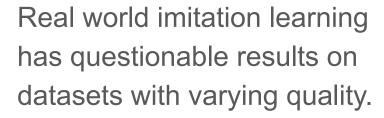


Decision Transformer for Robot Imitation Learning

Presenters: Alex Chandler, Jake Grigsby, Omeed Tehrani

11-29-2022

Motivation



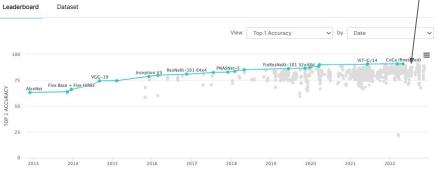
We seek to quantify the benefit of return conditioned imitation learning on mixed quality data by leveraging robomimic.

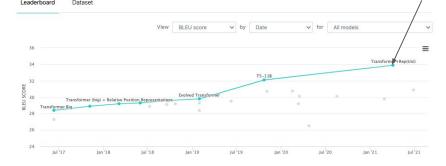
Additional Motivation

- Recent gains in performance by the Transformer architecture in NLP and Computer Vision
 - Larger models require fewer samples to reach comparable performance
 - Stable training in large language models
- Simplicity of converting RL to a sequence modeling problem
 - No need to estimate a good value function or rely on policy gradient methods

Image Classification on ImageNet

Transformer





Prior Work: Sequence Modeling in RL

Attention Is All You Need

Original Transformer architecture

Decision Transformer: Reinforcement Learning via Sequence Modeling

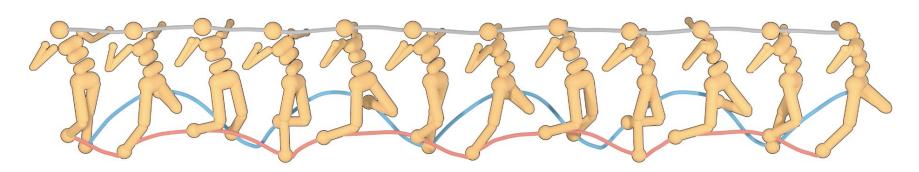
Basis of our project

Offline Reinforcement Learning as One Big Sequence Modeling Problem

Concurrent work from Berkeley

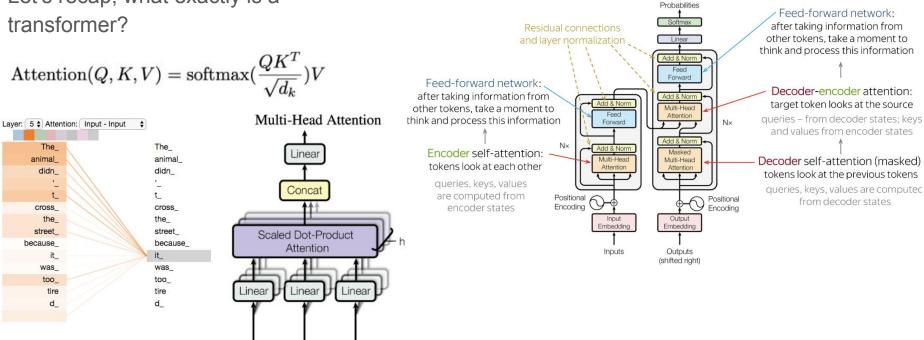
What Matters in Learning from Offline Human Demonstrations for Robot Manipulation

robomimic dataset



Transformers

Let's recap, what exactly is a



K

Output

Original Decision Transformer

- Decision Transformers
 abstract reinforcement
 learning as a sequence
 modeling problem.
- Offline reinforcement learning.

 We input state, actions, and returns-to-go into a causal transformer to get our desired actions.

What is robomimic?

Born from a paper known as What Matters in Learning from Offline Human Demonstrations for Robot Manipulation....

 This paper studies challenges in offline reinforcement learning from human datasets → lessons to guide future work → and release of all datasets and code to facilitate future work. Study design is a large evaluation of offline learning from human datasets:

- 8 tasks: lift, can, square, transport (for coordination), tool hang.
- 3 types of data sets: machine generate data, proficient human data, multi-human datasets.
- 6 offline learning algorithms: BC, BC-RNN, HBC, BCQ, CQL, IRIS
- 2 observation spaces: low dimensional agents with ground truth, image agents that receive camera observations

Dataset Types

- Machine-Generated (MG)
 - Mixture of suboptimal data from state-of-the-art RL agents
- Proficient-Human (<u>PH</u>) and Multi-Human (<u>MH</u>)
 - 500 total, with 200 proficient human and 300 multi-human.
 - Demonstrations from teleoperators of varying proficiency
- Our setting: <u>ALL</u> data
 - More challenging combination of MG, MH, and PH
 - Weighted towards lower-quality MG data

Dataset Tasks

We mainly focus on two tasks:

- 1. **Lift**: lift the cube
- 2. **Can**: pick up the can and place it in proper spot

Why? These tasks have large machine-generated (lower-quality) datasets

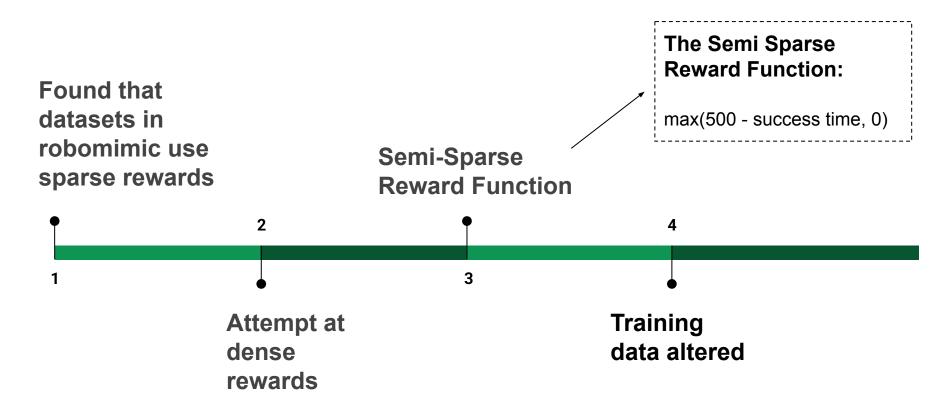
Lift

lift the cube

Can

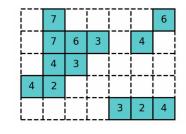
pickup and place the can

Semi-Sparse Reward Function



Sparse vs. Dense Rewards

Sparse reward:



0	7	0	0	0	0	6
0	7	6	3	0	4	0
0	4	3	0	0	0	0
4	2	0	0	0	0	0
0	0	0	0	3	2	4

- 1. In reinforcement learning, sparse is typically correspondent to a binary success. It is given to an agent when the task is successfully complete, which can be a rare occurrence.
- 2. It is typically given for long-term goals and complex tasks.

Dense Rewards:

- 1. Type of reward that has a lot of specificity and precision and provides feedback to the agent
- 2. Difficult to tune and implement in the real world
- 3. In our case, we use the default dense reward from robomimic, which includes metrics like **object distance from the gripper**.

Semi-Sparse Reward Function (additional info)

Found that datasets in robomimic use sparse rewards.

 This initially would require us to download every single robomimic dataset and remake it with dense rewards.

Our Architecture

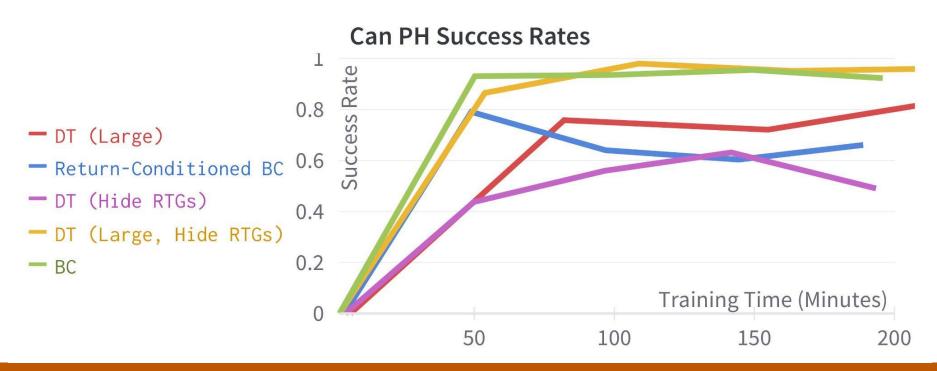
Experiments

- Naive BC
- BC + Action Inp
- DT-1 (PH Only)
- DT-3 (Context length of 3)
- DT-10 (Context length of 10)
- DT-20 (Context length of 20)

Demo

Behavior Cloning is difficult when using large mixed-quality datasets and multimodal demonstration policies

Return and Past-Action conditioning can make robomimic tasks more difficult



Longer sequence modeling improves action prediction and eases problems caused by multi-modal demonstrations

Task: Lift (All Data)

	Naive BC	BC + Action Inp.	DT-1 (PH Only)	DT-1	DT-3	DT-10	DT-20
Success Rate (%)	35	20	100	85	92	92	94
Return	189	113	463	397	428	433	421

Behavior Cloning large, mixed-quality data leads to surprisingly poor performance

Task: Lift (All Data)

	Naive BC	BC + Action Inp.	DT-1 (PH Only)	DT-1	DT-3	DT-10	DT-20
Success Rate (%)	35	20	100	85	92	92	94
Return	189	113	463	397	428	433	421

Removing the low-quality data allows for expert performance, as in original robomimic

Task: Lift (All Data)

	Naive BC	BC + Action Inp.	DT-1 (PH Only)	DT-1	DT-3	DT-10	DT-20
Success Rate (%)	35	20	100	85	92	92	94
Return	189	113	463	397	428	433	421

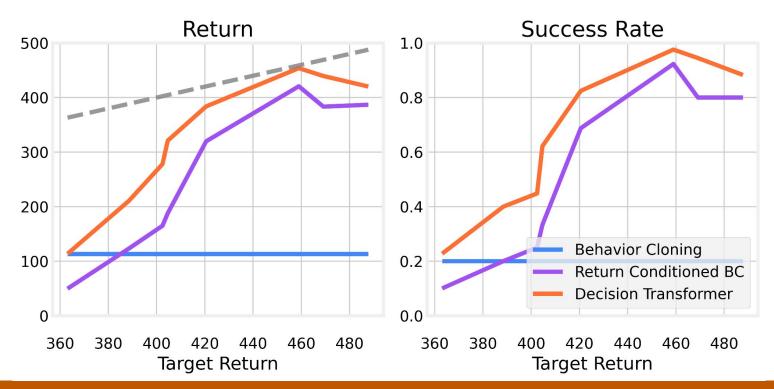
Decision Transformer can (mostly) filter the good demonstrations from the machine-generated noise

Task: Lift (All Data)

	DT-3	DT-10	DT-20	DT-3 (Gaussian)	DT-10 (Gaussian)	DT-20 (Gaussian)
Success Rate (%)	92	92	94	85	86	81
Return	428	433	421	403	406	386

The GMM policy is much better at modeling multi-modal policies than the standard Gaussian policy used by most RL agents

Decision Transformer lets us model the whole range of returns, not just the expert



Task: Can (All Data)

	BC (PH Only)	Naive BC	BC + Action Inp.	DT-3	DT-10	DT-20
Success Rate (%)	99	14	15	81	76	63
Return	396	72	74	362	337	286

Action and RTG input sequence makes this task significantly more difficult. But DT is much better than naive BC

See our poster for more

Task: Can (All Data)

	DT-3	DT-10	DT-20	DT-3	DT-10	DT-20	DT-3
	(Large)	(Large)	(Large)	(Small)	(Small)	(Small)	(Large, Gaussian)
Success Rate (%)	81	76	63	65	57	61	66
Return	362	337	286	292	262	278	204

Smaller Transformer sizes decrease performance in the Can task

Task: Can (All Data)

		DT-10 (Large)		DT-3 (Small)		DT-20 (Small)	DT-3 (Large, Gaussian)
Success Rate (%)	81	76	63	65	57	61	66
Return	362	337	286	292	262	278	204

Standard Gaussian policies are less capable of modeling multi-modal action distributions than our Gaussian Mixture Model default

Critiques and Limitations

- Extremely long training time
 → the datasets become extremely large when we combine all 3 data types, so more gradient updates are required to get good performance. Approximate 24 hours of training time.
- Dense Rewards in Robomimic → Robomimic was not designed for dense rewards. We believe that altering the reward that is returned to match our goal would likely lead to very good results.
- Reward Function → Creating a better reward function would likely yield some great results.
- 4. **Data Quality** → Lack of mixed-quality data for other tasks

Code Structure

Main files:

- agent.py
 - Main Class: Agent
- transformer.py
 - Contains actual transformer implementation
 - Key Classes
 - TransformerEncoder
 - TransformerLayer
- learn.py
 - Includes command line arguments for experimentation with ArgumentParser
 - Main Class: Experiment

Citations

- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling." Advances in neural information processing systems 34 (2021): 15084-15097.
- Janner, Michael, Qiyang Li, and Sergey Levine. "Offline reinforcement learning as one big sequence modeling problem." Advances in neural information processing systems 34 (2021): 1273-1286.
- Mandlekar, Ajay, et al. "What matters in learning from offline human demonstrations for robot manipulation." arXiv preprint arXiv:2108.03298 (2021).