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Abstract—Reinforcement learning typically involves an agent
interacting with an environment to achieve a maximum reward.
Our project disregards the traditional approach of estimating
policies and simplifies Reinforcement Learning to a sequence
modeling problem that can effectively be solved by the Trans-
former architecture. Our project extends the capabilities of the
initial Decision Transformer (DT) [4] to learn from mixed-
quality input data. Our modified Decision Transformer quantifies
the benefit of return-conditioned imitation learning on mixed-
quality data by leveraging the robomimic datasets. We show
that our Decision Transformer significantly outperforms standard
behavioral cloning on mixed-quality data for the Lift and Can
tasks. Overall, our Decision Transformer and semi-sparse reward
function provide a new way to tackle the challenges of imitation
learning with mixed-quality data.

I. INTRODUCTION

Robot imitation learning methods use supervised learning
to mimic the actions necessary to complete complex tasks.
This process typically involves a time-consuming cycle of
collecting and filtering high-quality human demonstrations. In
order to increase data availability and ease of use, we would
like to learn from sub-optimal demonstrations. Sources of sub-
optimal data may include inexperienced human teleoperators,
scripted agents, or past versions of our own learning-based pol-
icy. Learning from fixed datasets of mixed-quality experience
is often studied in offline Reinforcement Learning (RL) [17].
Despite a recent surge in research interest, offline RL remains
challenging in practice, and it can be difficult to develop a
method that achieves real-world results. Our project focuses
on the Decision Transformer [4] - a simple and powerful
alternative to RL algorithms that replaces brittle dynamic
programming and policy gradients with standard sequence
modeling. Like more traditional offline RL methods, Decision
Transformer (DT) can learn from mixed-quality demonstra-
tions by conditioning action outputs on the total return of each
trajectory. DT policies can then imitate high-quality data while
gathering extra information about the task by modeling low-
quality demonstrations. At test-time, we can specify an expert-
level target return and deploy a policy with the performance
of expert imitation learning without the need for expensive
curated datasets. DT reduces offline RL to a training routine
that resembles sequence models in supervised learning. There
is optimism that we can leverage diverse datasets and large
network architectures similar to those that have been success-
ful in domains like natural language processing to improve
generalization in robot decision-making.

In this project, we implement a custom version of the De-
cision Transformer focusing on continuous action spaces and
stochastic policies. We evaluate our implementations’ ability
to learn from mixed-quality data using two simulated domains
from the robomimic benchmark [19] that provide machine-
generated and expert demonstrations. We study the impact of
several design decisions on task success rates, including model
size, policy parameterization, and context sequence lengths.
Results demonstrate that our DT implementation significantly
outperforms naive Behavioral Cloning in this mixed-quality
and multi-modal setting. We also discuss some limitations of
our work and opportunities for future improvement on the
robomimic benchmark. The code for this project is open-
sourced and available on GitHub to enable future research1.

II. BACKGROUND AND RELATED WORK

A. Reinforcement Learning

In the Reinforcement Learning setting considered in this
paper, an agent interacts with an environment in order to
maximize a reward signal. At each timestep t, the agent
perceives a state st and selects an action at, leading to a
new state st+1 and a reward rt. The agent’s decision-making
strategy is defined by its policy π, which maps states to a
distribution over actions π(at | st). Our goal at every timestep
is to maximize the cumulative sum of rewards until some time
limit of H steps, also known as the return. We will use the
term “return-to-go” (RTG) to refer to the return after a specific
timestep t. The RTG at timestep t is denoted R̂t =

∑H
i=t ri.

Decision Transformer computes RTG values in hindsight from
an offline dataset and uses them to differentiate between low
and high-quality demonstrations.

B. Offline Reinforcement Learning

Offline RL [17] studies decision-making from fixed datasets
of prior experience. Unlike standard “online” RL, offline
agents cannot explore the environment to gather new informa-
tion about the task. Instead, offline methods attempt to stitch
together optimal decision-making strategies from datasets of
sub-optimal data to match or exceed the performance of the
policies that generated the training dataset. Offline algorithms
often have to confront technical challenges arising from sit-
uations our dataset does not cover. For example, methods
such as CQL [15], CRR [28], and BCQ [10] restrict their

1https://github.com/jakegrigsby/robomimic-decision-transformer

https://github.com/jakegrigsby/robomimic-decision-transformer


policies’ action choices to those present in the dataset in order
to avoid out-of-distribution optimization issues. Model-based
methods such as MOPO [31] explicitly penalize actions that
lead to uncertain states. The ultimate goal of offline RL is
to develop a scalable way to reuse data and deploy RL to
real-world tasks, where data collection is expensive or unsafe.
Examples include self-driving cars, healthcare, and real-world
robotics [17]. However, current methods can be difficult to
develop and tune without the ability to evaluate policies in
the test environment. Recent research has worked to simplify
techniques [9] and develop a repeatable workflow [16] for new
applications.

C. Robomimic

Robomimic2 [19] is a framework for offline robot learn-
ing from demonstrations as a part of the Advancing Robot
Intelligence through Simulated Environments (ARISE) Initia-
tive. Robomimic includes a unique collection of standardized
human-collected and machine-generated datasets for offline
RL and imitation learning. The benchmark currently sup-
ports several simulated manipulation tasks including “Lift”,
“Can”, “Tool Hang”, and “Square Transport”. These tasks use
the robosuite simulator [33] to enable affordable access to
offline robotics research. These simulated environments can
be configured to use low-dimensional proprioceptive states
instead of high-dimensional rendered images. Robomimic also
includes real-robot variants of similar tasks with camera-based
observations.

Robomimic divides each task’s offline dataset into several
categories based on demonstration quality and extensively
benchmarks behavioral cloning (BC) and offline RL algo-
rithms. The results suggest that learning from a mixture of
human datasets can be challenging because of the varying
proficiency and strategies of multiple demonstrators. Each tele-
operator solves the same task slightly differently, which leads
to multi-modality even in simple tasks; this effect would likely
be more problematic in the kinds of long-horizon tasks we
would eventually like robots to solve. The robomimic authors
find that offline RL methods can be challenging to use in
practice and are often outperformed by simpler BC techniques.
In particular, they find that the strongest baseline is a memory-
equipped BC policy that uses a Recurrent Neural Network
(RNN) to process sequences of observations. This BC-RNN
baseline improves action prediction by using its memory of
past timesteps to address the multi-modality of mixed human
demonstrators. However, BC-RNN still struggles when the
dataset contains low-quality demonstrations because it learns
to imitate all of the decisions in the training set as one unified
policy.

D. Outcome-Conditioned Behavioral Cloning

Recent work has looked to simplify offline RL by creat-
ing similarities to supervised learning techniques in related
fields like natural language processing and computer vision.

2https://github.com/ARISE-Initiative/robomimic

One promising approach adds the return-to-go of the offline
trajectory as an extra input to a BC algorithm: π(at | st, R̂t).
This lets the policy differentiate between high and low-quality
experiences during training. Low-quality data helps increase
the size of the training set and may provide some valuable
knowledge of the task. However, we can replicate only the
high-quality actions at test-time by specifying an expert-level
target return R̂0. Return-conditioned behavior cloning can
often match or outperform more complicated RL algorithms
[7, 14, 2]. The idea of conditioning behavioral cloning on the
quality of the demonstration datasets also appears as “Upside
Down RL” [23, 26]. The method has conceptual similarities
to goal-conditioned reinforcement learning [20, 1], which we
can reformulate as a supervised learning problem conditioned
on states instead of returns [8, 11].

E. Decision Transformers

The Transformer architecture [27] uses an attention mecha-
nism to process sequences without convolution or recurrence.
Originally utilized for machine translation in natural language
processing, the Transformer architecture has since appeared in
state-of-the-art models for tasks across nearly every domain in
machine learning. Transformers rely on a scaled dot-product
attention mechanism that enables the representations of each
timestep to interpret patterns across all the preceding timesteps
in the sequence. Transformers are highly compatible with GPU
parallelization and can learn complex temporal dependencies.
Transformers are generally known to outperform RNN models
while being more computationally efficient.

Decision Transformer [4] is an algorithm that combines the
simplicity of return-conditioned BC with the performance of
large Transformer networks. The Trajectory Transformer [13]
is a concurrent work that adds language modeling techniques
like beam search to RL. Additional extensions of the Decision
Transformer concept include online fine-tuning [32], few-shot
prompting [30], and applications to stochastic environments
[21]. Finally, Gato [22] uses a similar architecture and tok-
enization scheme to Decision Transformer, although on a much
larger scale and without return-conditioning.

III. METHOD

A. Data

Our data is collected and processed from the robomimic
dataset [19], providing us with a large-scale dataset of robot
demonstrations for a variety of tasks. The dataset includes
three types of data: machine-generated (MG), proficient-
human (PH), and multi-human (MH). The machine-generated
data is generated by state-of-the-art reinforcement learning
agents and is of varying quality, ranging from sub-optimal
to high-quality. The proficient-human and multi-human data
are demonstrations from teleoperators with varying levels of
proficiency.

In this work, we focus on two tasks from the robomimic
dataset: Lift and Can. The Lift task involves a robot lifting
a cube, while the Can task involves picking up a can and
placing it in the correct bin. These tasks were chosen because

https://github.com/ARISE-Initiative/robomimic


Fig. 1. The Lift task, where
the goal is to pick a red cube
off of the tabletop.

Fig. 2. The Can task, where the goal
is to pick up the red can and deposit
it in the proper container.

robomimic provides a large number of machine-generated
(low-quality) demonstrations for those two tasks, which high-
lights the problem of learning from mixed datasets. To evaluate
our approach, we create a fourth dataset for each task. This
“All” dataset category is a challenging combination of the
machine-generated, multi-human, and proficient-human data.
Because there is much more MG data than human demonstra-
tions, the “All” dataset is weighted towards lower-quality data,
making it an interesting challenge for our purposes. Using
this dataset, we can test DT’s ability to learn from both high-
quality and low-quality demonstrations. The Lift environment
is shown in Figure 1 and the Can environment is shown in
Figure 2.

B. Semi-Sparse Reward Function

The offline datasets in the original robomimic study use
a binary reward function where the agent receives a reward
of 1 for successful completion of the task and 0 at all other
timesteps. Decision Transformer uses dense reward functions
to differentiate between many different modes of policy quality
[4]. Therefore, our first step was to assign a more dense reward
signal to robomimic’s manipulation tasks. The robomimic
codebase does provide an option to relabel datasets with
robosuite’s dense reward function. However, we found that
the resulting rewards were not correlated with the quality of
the dataset. In the Lift task dataset, for example, the proficient-
human demos had the highest success rate but the lowest return
values, while machine-generated data had the lowest success
rate but the highest returns. This was a result of the worse
quality demonstrations compensating for their low reward per
timestep by taking much longer to solve the task, leading
to a higher total return. To address the issue, we manually
changed the reward function to include a semi-sparse success
bonus. We added a large positive reward upon completion of
the task which decreases with every timestep. Let rrobomimic

t

be the original dense reward term provided by the robomimic
dataset at time t, and dt be a binary “done” flag where dt = 1
indicates successful task completion. We define a new reward
term rDT

t :

rDT
t = rrobomimic

t + dt max(500− t, 0) (1)

The success bonus decreases to zero after 500 timesteps,
which is the maximum length of the robomimic tasks. We
relabel the offline dataset using Equation 1, and modify the
reward function in the environment simulator for evaluation.
This design lets our DT learn from a wide range of target
values and improve its understanding of the quality of the
sequence data, even in the presence of low-quality data.

C. Decision Transformer Architecture

Our implementation is a modification of the original Deci-
sion Transformer architecture. The input format is a context
sequence of up to k tokens, where k is the context length.
Each token is a vector that concatenates a state st, return-to-go
R̂t, and the previous action at−1

3. All sequences are padded
to a length of k. The resulting sequence is projected to the
embedding dimension of the Transformer architecture with a
two-layer feedforward network. Transformers are permutation-
invariant and require a position encoding to interpret the order
of input tokens. The original Transformer [27] used a hard-
coded sinusoidal embedding. Instead, we randomly initialize
embedding vectors for each of the k position indices and train
them alongside the rest of the model. This solution is more
popular in domains with continuous inputs such as Vision
Transformers [6]. The (s, a, R̂) and position embeddings are
summed together and form the input sequence of the core
Transformer architecture. Our input format is a slight depar-
ture from the original DT, which embedded states, actions,
and RTGs as separate consecutive tokens. Our concatenated
version simplifies the implementation and position embedding
while saving compute by reducing the overall sequence length
by a factor of 3.

The embedded sequence of tokens is then fed into a causal
Transformer, which uses a self-attention mechanism to model
the dependencies between the tokens. We use a Pre-Norm
Transformer [29] architecture, which shifts the location of
the layer normalization component to the residual branch.
This is thought to improve stability early in training and
enable deeper networks. The output of the Transformer is a
sequence with the same dimensions as the embedded input.
After a final normalization layer, this sequence is projected
by a two-layer feedforward network into the dimension of
the action distribution. The original DT uses a deterministic
policy that outputs the action vector directly and is trained
with mean squared error. We are focused on manipulation tasks
with highly multi-modal demonstrations that would be difficult
to model with a deterministic policy. Instead, our network
generates the parameters of a stochastic distribution over
actions. We implement a Gaussian policy with independent
parameters for each dimension of the action space - a common
default in the RL literature (e.g., [24, 12]). We also add a
Gaussian Mixture Model (GMM) policy based on robomimic
that adds extra parameters in order to better represent multi-
modal action distributions. We use the GMM parameterization

3The first timestep of every trajectory is missing a previous action (a−1),
which we define as a zero vector.



with 5 modes by default, and compare the two policy types
in the Section IV. A high-level summary of our DT model is
depicted in Figure 3.

Fig. 3. Our Decision Transformer architecture, with states, actions, and
return-to-go values concatenated into one token. DT maps a context sequence
of k tokens to a sequence of k action distributions.

D. Training

Decision Transformer uses a standard sequence modeling
objective and training loop. This can greatly simplify its
implementation relative to many techniques in offline RL,
where best practices are an open research topic [16]. We
optimize our network parameters θ to maximize the probability
of true actions in the dataset (D) given the sequence of k
previous states, actions, and RTG values:

ct := (st, at−1, R̂t)

θ∗ := E
at,ct,...,ct−k∼D

[−logπθ(at | ct, . . . , ct−k)] (2)

We use several empirical best practices from the wider
Transformer literature to stabilize training, including the
AdamW optimizer [18] and a linear learning rate warm-up
for the first two thousand gradient steps [27]. The batch size
is fixed at 256. Training is performed on a single NVIDIA
GeForce RTX-3090 and takes roughly 6 hours depending
on model size. Much of the training time is consumed by
evaluation rollouts in the simulated environments which are
comparatively slow. We perform the evaluation in parallel
across 8 independent environments, batching and padding the
sequences into one forward pass of the Transformer.

IV. EXPERIMENTS

In this section, we explore the challenges of action and
return conditioned imitation learning and provide results for
the Can and Lift tasks. We investigate the effects of intro-
ducing inaccuracies at test-time by conditioning the policy on
its own slightly inaccurate history of actions and return-to-
go values. Our experiments show that these inaccuracies can
lead to lower task success rates for Decision Transformers
(DT) compared to behavior cloning (BC) baselines. We then
train DT models with various context sequence lengths on the
more difficult ”All” data setting of the Can task and show that
longer context sequences improve prediction accuracy. Finally,
we compare DT against BC baselines on the mixed-quality

Fig. 4. Success rate of ablations of the DT input format in the Can task
using only the highest quality PH data. “Large” policies double the networks’
embedding and feedforward dimensions.

“All” dataset, demonstrating the effectiveness of DT’s return-
conditioning and context sequences for imitation learning in
complex environments.

A. Understanding the Challenges of Action and Return-
Conditioned Imitation Learning

Decision Transformers condition their outputs on a fixed-
length history of previous actions, return-to-go scalars, and
observations. While this may help differentiate between the
various demonstrators in a mixed-quality dataset, it also
introduces new opportunities for distributional shifts during
evaluation: at test-time, the policy is conditioned on the
history of its own (slightly inaccurate) actions and return-to-
go values. These inaccuracies can compound over the length
of a trajectory, potentially causing DT to achieve a lower task
success rate than a BC baseline. As a first step, we investigate
this effect on the Can placement task using only the highest
quality dataset of human demonstrations (PH). In this setting,
DT’s ability to learn from mixed-quality data is less relevant.
We use context lengths of one to compare directly against BC,
meaning that the input to a DT model during evaluation is the
most recent state, action, and return-to-go. We can optionally
hide the action and/or RTG information. Hiding actions and
RTGs recover the simple BC baseline, and a context length
of one makes the attention component of the Transformer
redundant.

Success rates are measured by pausing training and evaluat-
ing the current policy in the robomimic environment simulator.
The success rates of several ablations of DT input format over
the course of training are plotted in Figure 4. While standard
BC matches the performance of the demonstrations and the
original robomimic baselines, DT variants that introduce ac-
tion and RTG inputs can struggle to achieve expert results.
Increasing model size appears to improve performance by
outputting more accurate actions and being more robust to
variations in the input.

B. Decision Transformer on Can and Lift Tasks

Although action and RTG inputs may harm performance
at test-time, our next experiment investigates whether DT’s
sequence inputs improve the accuracy of action predictions
during training. We train identical DT agents with context
lengths of 3, 10 and 20 on the more difficult “All” data



Fig. 5. Training Loss of DT with context lengths of 3, 10 and 20. Longer
context sequences improve action predictions by resolving ambiguity about
which demonstrator is being imitated.

setting of the Can task. We would expect longer context
sequence lengths to improve prediction accuracy by providing
more information on the quality and action choices of the
demonstrator that created each training sequence. The negative
log-likelihood training loss (Equation 2) for the three models
is plotted in Figure 5. Despite equal model sizes, regulariza-
tion, and optimization settings, DT’s fit of the training data
improves with context sequence length.

Next, we conduct a larger-scale evaluation of DT with
various context lengths and policy types. We compare against
simpler BC baselines on the mixed-quality “All” dataset types
consisting of both low-quality machine-generated data and
high-quality human demonstrations. The results for the Lift
task are shown in Table I, where DT-k denotes our Decision
Transformer model with a context sequence of length k.
Because DT is conditioned on the return-to-go values of its
training data, we need to select a target return to imitate at
test-time. We settle on the simple heuristic of finding the
95th percentile of the returns in the training dataset. We
explore this choice further in Section IV-D. The Naive BC
method uses a Gaussian policy without context sequences or
return-conditioning and achieves a success rate of just 35% -
highlighting the challenges of imitation learning from mixed-
quality datasets with multiple demonstrators. For comparison,
the original robomimic BC results achieve a success rate of
100% using the PH data and 65% from the lowest-quality
MG data. We replicate these experiments with our codebase
and report success rates of 99% for Naive BC on PH data.
This suggests that learning from the mixed “All” dataset is
more difficult than learning from any of its sub-components
as a result of multi-modality. DT uses return-conditioning to
filter dataset quality and context sequences to resolve multi-
modality. As a sanity check, we train DT-1 on the PH data
with 100% success. DT-1 still sees a decrease in performance
on the “All” dataset but uses its return-conditioning to improve
significantly on the BC baseline with a success rate of 85%.
By extending the context sequence to 20 timesteps, DT-20 can
further improve to 94%.

Table II shows the results of a similar experiment on the
Can task. Although we successfully replicate the near-perfect
success rate of the original robomimic results on the PH data,

Naive BC once again fails (14%) on our mixed dataset. The
relative performance of the methods on Can is similar to
Lift, although we find the return and action conditioning to
have a negative impact on this task as noted in Section IV-A.
DT-3 achieves the highest performance on Can-All with a task
success rate of 81%. Further discussion of the challenges in
recovering the 100% success rate of the PH dataset with our
Decision Transformer model is provided in Section V.

C. Ablations

There are two key implementation details that affect the
performance of the Decision Transformer which could benefit
from further analysis. First is the size of the Transformer archi-
tecture. While massive multi-billion parameter Transformers
have been essential for progress in language modeling [3]
when learning from internet-scale datasets, recent applications
of Transformers to RL and robotic control problems have
preferred much smaller model sizes [25, 4, 5]. We compare
the performance of the larger Transformer used in the main
Can-All experiments (Table II) - which used an embedding
dimension of 512, a feedforward dimension of 2048, and 4
Transformer layers - with a smaller architecture of 3 layers
with embedding dimension 200 and feedforward dimension
800. The smaller architecture is the same as was used for the
easier Lift-All experiments (Table I). The results are shown in
Table III. The larger model appears to provide a meaningful
improvement in performance across all three context lengths.
Because expert human demonstrations are expensive to collect,
related work in Transformers for robotic imitation learn-
ing uses architectures much smaller than even our “Small”
model to prevent overfitting. DT’s return-conditioning offers a
promising way to make use of diverse experiences and benefit
from the generalization of large networks.

Next, we compare two choices of policy parameterization.
The independent Gaussian policy is widely used in the RL
literature for continuous control. However, the multi-modal
policies created by a mixture of human demonstrations may
benefit from a more expressive policy. We include a Gaussian
Mixture Model (GMM) policy and enable it by default in
all previous experiments with the exception of Naive BC. In
Table IV, we directly compare the two policy choices at three
context lengths on the Lift-All task, where GMM outperforms
the Gaussian alternative in all cases. In general, we would
expect the gap between the two policy choices to decrease
as the context length grows and the action sequence becomes
more specific to a single demonstrator and therefore less multi-
modal.

D. Return-Conditioning

Because Decision Transformer models the actions of a range
of policies of different quality, we are forced to select a “target
return” or initial RTG that creates the first input token of the
context sequence. While the target return can be difficult to
select in an online setting [32, 26], in our offline case we
can make an informed decision by looking at the distribution
of returns available to us in the dataset. All results so far



TABLE I
LIFT-ALL RESULTS

Naive BC BC +
Action Inp.

DT-1
(PH Only) DT-1 DT-3 DT-10 DT-20

Success Rate (%) 35 20 100 85 92 92 94
Return 189 113 463 397 428 433 421

TABLE II
CAN-ALL RESULTS

BC
(PH Only) Naive BC BC +

Action Inp. DT-3 DT-10 DT-20

Success Rate (%) 99 14 15 81 76 63
Return 396 72 74 362 337 286

TABLE III
DT NETWORK SIZES ON CAN-ALL

DT-3
(Large)

DT-10
(Large)

DT-20
(Large)

DT-3
(Small)

DT-10
(Small)

DT-20
(Small)

DT-3
(Large, Gaussian)

Success Rate (%) 81 76 63 65 57 61 66
Return 362 337 286 292 262 278 204

TABLE IV
GMM VS. GAUSSIAN ON LIFT-ALL

DT-3 DT-10 DT-20 DT-3
(Gaussian)

DT-10
(Gaussian)

DT-20
(Gaussian)

Success Rate (%) 92 92 94 85 86 81
Return 428 433 421 403 406 386

have used the heuristic of replicating the 95th percentile of
the returns in the training data. This decision was motivated
by our desire to replicate high-quality behavior while staying
safely inside the distribution of the training data. However,
we can experiment with other choices of initial RTG. We
evaluate trained policies across a range of target returns and
plot the results in Figure 6. Because standard BC is not return-
conditioned, the target return has no effect and the policy
performs equally poorly in all conditions. Adding the target
return as an extra input to BC does allow for adaptation to
multiple levels of quality; as our target return increases so does
the actual return (Fig. 6 left) and success rate (Fig. 6 right).
Decision Transformer uses its context sequence to improve
action predictions and more closely matches the target return
than return-conditioned BC. Note that all policies significantly
underperform the target return at the lowest quality levels
(360 − 400). We speculate that this discrepancy is caused
by difficulty in accurately mimicking low-return policies as
a result of the way our custom reward function is correlated
with demonstration length. It may be challenging to replicate
slow solutions to the task with a limited context sequence and
without time information in the state representation.

Fig. 6. Return-conditioned policies replicate a range of performance qualities.
As the target return increases, so does the actual return and success rate of
the agents.

V. DISCUSSION AND FUTURE WORK

Our experiments suggest that return-conditioned imitation
learning methods like Decision Transformers can outperform
standard Behavioral Cloning when learning from mixed-
quality data. However, our implementation of DT still under-
performs BC models that use the highest quality subset of
the dataset (PH). The real promise of Decision Transformer
is its ability to mimic high-quality data while still learning
whatever may be useful from a large quantity of sub-optimal
demonstrations. Ideally, DT would strictly outperform the BC-
PH baselines and make use of MG datasets in more difficult
robomimic tasks like Square and Tool Hang. We offer three
possible explanations for why we are not seeing these results,
and suggest directions for future improvement.

First, limited computational resources have restricted our
ability to perform large hyperparameter sweeps. It is possible
that there are higher-performance model architectures, regular-
ization settings, and other empirical details that could improve
our results. We hope that our open-source code release will
be a useful starting point for future experiments.

Second, there may be alternative reward functions that are
more suitable for return-conditioned BC than the time-based
completion bonus used in our experiments (Eq. 1). Rewarding



the agent for the time to completion clearly separates poor
MG demonstrations from quality PH ones. However, it may
over-emphasize fast solutions instead of consistent and easily
repeatable behavior. Furthermore, the time-based rewards may
be too difficult for the sequence model to imitate precisely
because it is difficult to identify the current time with a
fixed-length context window. Results such as Fig. 6 show
that current policies struggle to imitate low-return (slow)
demonstrations. We plan to add a timestep counter to the state
representation in the open-source release and re-evaluate on
the more difficult robomimic tasks.

Finally, there may be meaningful algorithmic changes
needed to address some limitations of return-conditioned
imitation learning in the robomimic setting. Because the
robomimic datasets contain much more machine-generated
data than human demonstrations, our return-to-go labeled
dataset is heavily skewed toward low-return outcomes. Re-
labeling trajectories in hindsight with their achieved return
creates an implicit “task-averaging” or return-agnostic term
in the resulting policy, which can be especially problematic in
cases where the outcome distribution is biased. For more on
this issue, we refer the reader to [8].

VI. CONCLUSION

In this paper, we propose a modified version of the Decision
Transformer for robotic imitation learning and evaluate its
performance on sub-optimal datasets. We show that the Trans-
former’s ability to understand context and long-term depen-
dencies can improve action predictions and outperform return-
conditioned behavioral cloning. However, we also find that
conditioning on a history of previous actions and RTG scalars
can hinder the model’s performance and result in distributional
shifts during evaluation. We demonstrate that increasing model
size can improve performance on both tasks and that longer
context sequence lengths can improve prediction accuracy
during training. When compared to simpler baselines, we see
clear improved performance on both tasks.

Our work has the potential to be applied in various robotics
tasks, particularly those that involve working with sub-optimal
or “noisy” data. General robotics research focuses on design-
ing robots that can operate in unstructured environments, such
as homes and offices, where data collection for manipulation
tasks can be noisy and difficult. Our approach could potentially
be a useful starting point for using Decision Transformers to
improve the performance of robots in these types of settings.
For instance, we can use past versions of data to improve our
models over time, employ a wide range of policies on different
data types, and reduce the need for extensive data cleaning
before training. Additionally, future work should focus on
mitigating the distributional shifts observed in our approach
and exploring ways of improving the reward function to better
support dense rewards. We open-source the entire project as a
stepping stone in these endeavors.
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Wojciech Jaśkowski, and Jürgen Schmidhuber. Training

agents using upside-down reinforcement learning, 2019.
URL https://arxiv.org/abs/1912.02877.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2017.
URL https://arxiv.org/abs/1706.03762.

[28] Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S
Merel, Jost Tobias Springenberg, Scott E Reed,
Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nico-
las Heess, and Nando de Freitas. Critic regular-
ized regression. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 33, pages 7768–7778. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper/2020/
file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf.

[29] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan,
Liwei Wang, and Tieyan Liu. On layer normalization in
the transformer architecture. In International Conference
on Machine Learning, pages 10524–10533. PMLR, 2020.

[30] Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding
Zhao, Joshua Tenenbaum, and Chuang Gan. Prompting
decision transformer for few-shot policy generalization.
In International Conference on Machine Learning, pages
24631–24645. PMLR, 2022.

[31] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon,
James Y Zou, Sergey Levine, Chelsea Finn, and Tengyu
Ma. Mopo: Model-based offline policy optimization.
Advances in Neural Information Processing Systems, 33:
14129–14142, 2020.

[32] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online
decision transformer, 2022. URL https://arxiv.org/abs/
2202.05607.

[33] Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto
Martı́n-Martı́n. robosuite: A modular simulation frame-
work and benchmark for robot learning. arXiv preprint
arXiv:2009.12293, 2020.

https://arxiv.org/abs/2106.02039
https://arxiv.org/abs/1912.13465
https://arxiv.org/abs/1912.13465
https://arxiv.org/abs/2205.15967
https://arxiv.org/abs/2205.15967
https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/1912.02875
https://arxiv.org/abs/1912.02877
https://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf
https://arxiv.org/abs/2202.05607
https://arxiv.org/abs/2202.05607

	Introduction
	Background and Related Work
	Reinforcement Learning
	Offline Reinforcement Learning
	Robomimic
	Outcome-Conditioned Behavioral Cloning
	Decision Transformers

	Method
	Data
	Semi-Sparse Reward Function
	Decision Transformer Architecture
	Training

	Experiments
	Understanding the Challenges of Action and Return-Conditioned Imitation Learning
	Decision Transformer on Can and Lift Tasks
	Ablations
	Return-Conditioning

	Discussion and Future Work
	Conclusion

